Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Clinics in Orthopedic Surgery ; : 99-110, 2018.
Article in English | WPRIM | ID: wpr-713320

ABSTRACT

BACKGROUND: To evaluate the influence of bone marrow aspirate concentrate (BMAC) on tendon-to-bone healing in a rabbit rotator cuff model and to characterize the composition of growth factors in BMAC. METHODS: In this in vivo study, 40 rabbits were allocated into five groups: control (C), repair + saline (RS), repair + platelet-rich plasma (PRP; RP), repair + BMAC (RB) and repair + PRP + BMAC (RPB). A tear model was created by supraspinatus tendon transection at the footprint. Six weeks after transection, the torn tendon was repaired along with BMAC or PRP administration. Six weeks after repair, shoulder samples were harvested for biomechanical and histological testing. Ten rabbits were used for processing PRP and BMAC, followed by analysis of blood cell composition and the levels of growth factors in vitro. RESULTS: The ultimate load-to-failure was significantly higher in RPB group compared to RS group (p = 0.025). BMAC-treated groups showed higher values of biomechanical properties than RS group. The histology of BMAC-treated samples showed better collagen fiber continuity and orientation than RS group. BMAC contained significantly higher levels of the several growth factors than PRP. CONCLUSIONS: Locally administered BMAC enhanced tendon-to-bone healing and has potential for clinical applications.


Subject(s)
Rabbits , Blood Cells , Bone Marrow , Collagen , In Vitro Techniques , Intercellular Signaling Peptides and Proteins , Platelet-Rich Plasma , Rotator Cuff , Shoulder , Tears , Tendons
2.
Chinese Medical Journal ; (24): 4037-4043, 2012.
Article in English | WPRIM | ID: wpr-339904

ABSTRACT

<p><b>BACKGROUND</b>Sterol regulatory element binding protein (SREBP)-2 plays a key role in lipid homeostasis by stimulating gene expression of cholesterol biosynthetic pathways. The insulin-like growth factor binding protein (IGFBP) family regulates growth and metabolism, especially bone cell metabolism, and correlates with osteonecrosis. However, association of their gene polymorphisms with risk of avascular necrosis of the femoral head (ANFH) has rarely been reported. We determined whether SREBP-2 and IGFBP-3 gene polymorphisms were associated with increased ANFH risk in the Chinese population.</p><p><b>METHODS</b>Two single nucleotide polymorphisms of SREBP2 gene, rs2267439 and rs2267443, and one of IGFBP-3 gene, rs2453839, were selected and genotyped in 49 ANFH patients and 42 control individuals by direct sequencing assay.</p><p><b>RESULTS</b>The frequencies of rs2267439 TT and rs2267443 GA of SREBP2 and rs2453839 TT and CT of IGFBP-3 in the ANFH group showed increased and decreased tendencies (against normal control group), respectively. Interaction analysis of genes revealed that the frequency of carrying rs2267439 TT and rs2267443 GA genotypes of SREBF-2 in ANFH patients was significantly higher than in the control group (P < 0.05). Association analysis between polymorphisms and clinical phenotype demonstrated that the disease course in ANFH patients with the rs2453839 TT genotype of IGFBP-3 was significantly shorter than that of CT + CC carriers (P < 0.01). CT + CC genotype frequency in patients with stage III/IV bilateral hip lesions was significantly higher than in those with stage III/IV unilateral lesions and stage II/III bilateral lesions (P < 0.05 - 0.02).</p><p><b>CONCLUSIONS</b>Our results suggested that interaction of SREBP-2 gene polymorphisms and the relationship between the polymorphisms and clinical phenotype of IGFBP-3 were closely related to increased ANFH risk in the Chinese population. The most significant finding was that the CT + CC genotype carriers of IGFBP-3 rs2453839 were highly associated with the development of ANFH.</p>


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Asian People , Genetics , Femur Head Necrosis , Genetics , Genetic Predisposition to Disease , Insulin-Like Growth Factor Binding Protein 3 , Genetics , Polymerase Chain Reaction , Polymorphism, Genetic , Genetics , Sterol Regulatory Element Binding Protein 2 , Genetics
3.
Chinese Medical Journal ; (24): 893-902, 2005.
Article in English | WPRIM | ID: wpr-288328

ABSTRACT

<p><b>BACKGROUND</b>RNA interference using short hairpin RNA (shRNA) can mediate sequence-specific inhibition of gene expression in mammalian cells. A vector-based approach for synthesizing shRNA has been developed recently. Overexpression of P-glycoprotein (P-gp), the MDR1 gene product, confers multidrug resistance (MDR) to cancer cells. In this study, we reversed MDR using shRNA expression vectors in a multidrug-resistant human breast cancer cell line (MCF-7/AdrR).</p><p><b>METHODS</b>The two shRNA expression vectors were constructed and introduced into MCF-7/AdrR cells. Expression of MDR1 mRNA was assessed by RT-PCR, and P-gp expression was determined by Western Blot and immunocytochemistry. Apoptosis and sensitization of the breast cancer cells to doxorubicin were quantified by flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. Cellular daunorubicin accumulation was assayed by laser confocal scanning microscopy (LCSM). Statistical significance of differences in mean values was evaluated by Student's t tests. P < 0.05 was considered statistically significant.</p><p><b>RESULTS</b>In MCF-7/AdrA cells transfected with MDR1-A and MDR1-B shRNA expression vectors, RT-PCR showed that MDR1 mRNA expression was reduced by 40.9% (P < 0.05), 30.1% (P < 0.01) (transient transfection) and 37.6% (P < 0.05), 28.0% (P < 0.01) (stable transfection), respectively. Western Blot and immunocytochemistry showed that P-gp expression was significantly and specifically inhibited. Resistance against doxorubicin was decreased from 162-fold to 109-fold (P < 0.05), 54-fold (P < 0.01) (transient transfection) and to 108-fold (P < 0.05), 50-fold (P < 0.01) (stable transfection). Furthermore, shRNA vectors significantly enhanced the cellular daunorubicin accumulation. The combination of shRNA vectors and doxorubicin significantly induced apoptosis in MCF-7/AdrR cells.</p><p><b>CONCLUSIONS</b>shRNA expression vectors effectively reduce MDR expression in a sustained fashion and can restore the sensitivity of drug-resistant cancer cells to conventional chemotherapeutic agents.</p>


Subject(s)
Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Cell Line, Tumor , Cell Survival , Daunorubicin , Pharmacokinetics , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Flow Cytometry , Genes, MDR , Genetic Vectors , RNA Interference , RNA, Small Interfering , Genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL